Skip to content
Publicly Available Published by De Gruyter November 23, 2013

Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)

  • Kipton J. Powell , Paul L. Brown , Robert H. Byrne , Tamás Gajda , Glenn Hefter , Ann-Kathrin Leuz , Staffan Sjöberg and Hans Wanner

Abstract

The numerical modeling of ZnII speciation amongst the environmental inorganic ligands Cl–, OH–, CO32–, SO42–, and PO43– requires reliable values for the relevant stability (formation) constants. This paper compiles and provides a critical review of these constants and related thermodynamic data. It recommends values of log10βp,q,r° valid at Im = 0 mol·kg–1 and 25 °C (298.15 K), and reports the empirical reaction ion interaction coefficients, ∆ε, required to calculate log10βp,q,r values at higher ionic strengths using the Brønsted–Guggenheim–Scatchard specific ion interaction theory (SIT). Values for the corresponding reaction enthalpies, ∆rH, are reported where available. There is scope for additional high-quality measurements for the Zn2+ + H+ + CO32– system and for the Zn2+ + OH– and Zn2+ + SO42– systems at I > 0. In acidic and weakly alkaline fresh water systems (pH < 8), in the absence of organic ligands (e.g., humic substances), ZnII speciation is dominated by Zn2+(aq). In this respect, ZnII contrasts with CuII and PbII (the subjects of earlier reviews in this series) for which carbonato- and hydroxido- complex formation become important at pH > 7. The speciation of ZnII is dominated by ZnCO3(aq) only at pH > 8.4. In seawater systems, the speciation at pH = 8.2 is dominated by Zn2+(aq) with ZnCl+, Zn(Cl)2(aq), ZnCO3(aq), and ZnSO4(aq) as minor species. This behaviour contrasts with that for CuII and PbII for which at the pH of seawater in equilibrium with the atmosphere at 25 °C (log10 {[H+]/c°} ≈ 8.2) the MCO3(aq) complex dominates over the MCln(2–n)+ species. The lower stability of the different complexes of ZnII compared with those of CuII, PbII, and CdII is also illustrated by the percentage of uncomplexed M2+ in seawater, which is ca. 55, 3, 2, and 3.3 % of [MII]T, respectively.

W. Herz. Z. Anorg. Chem.22, 222 (1900). (http://dx.doi.org/10.1002/zaac.19000230122)Search in Google Scholar

F. Kunschert. Z. Anorg. Chem.41, 337 (1904). (http://dx.doi.org/10.1002/zaac.19040410121)Search in Google Scholar

J. Wood. J. Chem. Soc.97, 878 (1910).Search in Google Scholar

F. Ageno, E. A. Valla. Atti. Accad. Lincei. Rend. Classe20, 706 (1911).Search in Google Scholar

O. Klein. Z. Anorg. Chem.74, 157 (1912). (http://dx.doi.org/10.1002/zaac.19120740116)Search in Google Scholar

A. A. Noyes, K. G. Falk. J. Am. Chem. Soc.34, 454 (1912). (http://dx.doi.org/10.1021/ja02205a013)Search in Google Scholar

C. Kullgren. Z. Phys. Chem.85, 466 (1913).Search in Google Scholar

H. J. Smith. J. Am. Chem. Soc.40, 879 (1918). (http://dx.doi.org/10.1021/ja02239a002)Search in Google Scholar

H. J. Smith. J. Am. Chem. Soc.40, 883 (1918). (http://dx.doi.org/10.1021/ja02239a003)Search in Google Scholar

J. Heyrovsky. Trans. Faraday Soc.19, 692 (1923). (http://dx.doi.org/10.1039/tf9241900692)Search in Google Scholar

H. J. de Wijs. Rec. Trav. Chim.44, 663 (1925). (http://dx.doi.org/10.1002/recl.19250440804)Search in Google Scholar

C. W. Davies. Trans. Faraday Soc.23, 351 (1927).Search in Google Scholar

H. Dietrich, J. Johnston. J. Am. Chem. Soc.49, 1419 (1927). (http://dx.doi.org/10.1021/ja01405a005)Search in Google Scholar

I. A. Cowperthwaite, V. K. La Mer. J. Am. Chem. Soc.53, 4333 (1931). (http://dx.doi.org/10.1021/ja01363a010)Search in Google Scholar

I. Kolthoff, T. Kameda. J. Am. Chem. Soc.53, 832 (1931). (http://dx.doi.org/10.1021/ja01354a003)Search in Google Scholar

M. Prytz. Z. Anorg. Chem.197, 103 (1931).Search in Google Scholar

K. Jellinek, F. Enke. Lehrbuch Physikalische Chemie, 2nd ed., Stuttgart (1933).Search in Google Scholar

K. Kelley, C. Anderson. Bur. Mines Bull.384 (1935).Search in Google Scholar

C. W. Davies. J. Chem. Soc.2093 (1938). (http://dx.doi.org/10.1039/jr9380002093)Search in Google Scholar

B. B. Owen, R. W. Gurry. J. Am. Chem. Soc.60, 3074 (1938). (http://dx.doi.org/10.1021/ja01279a068)Search in Google Scholar

Y. Oka. J. Chem. Soc. Jpn.59, 971 (1938).Search in Google Scholar

H. Hagisawa. Bull. Inst. Phys. Chem. Tokyo18, 260 (1939).Search in Google Scholar

H. Hagisawa. Bull. Inst. Phys. Chem. Tokyo18, 368 (1939).Search in Google Scholar

H. Hagisawa. Bull. Inst. Phys. Chem. Tokyo18, 648 (1939).Search in Google Scholar

H. F. Brown, J. A. Cranston. J. Chem. Soc.578 (1940). (http://dx.doi.org/10.1039/jr9400000578)Search in Google Scholar

M. von Stackelberg, H. von Freyhold. Z. Elektrochem.46, 120 (1940).Search in Google Scholar

L. G. Sillén, B. Liljeqvist. Svensk Kem. Tidskr.56, 85 (1944).Search in Google Scholar

R. H. Stokes, B. J. Levien. J. Am. Chem. Soc.68, 333 (1946). (http://dx.doi.org/10.1021/ja01206a055)Search in Google Scholar

I. A. Korshunov, E. F. Khrul’kova. Zh. Obshch. Khim.19, 2045 (1949).Search in Google Scholar

N. V. Aksel’rud, Y. A. Fialkov. Ukr. Khim. Zh.16, 283 (1950).Search in Google Scholar

P. Bernheim, M. Quintin. Compt. Rend.230, 388 (1950).Search in Google Scholar

W. Feitknecht, E. Häberli. Helv. Chim. Acta33, 922 (1950). (http://dx.doi.org/10.1002/hlca.19500330422)Search in Google Scholar

C. W. Davies. J. Chem. Soc.1256 (1951). (http://dx.doi.org/10.1039/jr9510001256)Search in Google Scholar

A. Stabrovskii. Zh. Obshch. Khim.21, 949 (1951).Search in Google Scholar

P. A. H. Wyatt. Trans. Faraday Soc.47, 656 (1951). (http://dx.doi.org/10.1039/tf9514700656)Search in Google Scholar

F. Zharovskii. Trudy An. Khim. Akad. Nauk SSSR3, 101 (1951).Search in Google Scholar

S. Chaberek, R. C. Courtney, A. E. Martell. J. Am. Chem. Soc.74, 5057 (1952). (http://dx.doi.org/10.1021/ja01140a019)Search in Google Scholar

M. Sahli. Dissertation, Bern (1952).Search in Google Scholar

W. Feitknecht. Löslichkeiten von Hydroxyden, IUPAC Analytical Section Report (1953).Search in Google Scholar

S. Shchukarev, L. Lilich, V. Latysheva. Dokl. Akad. Nauk SSSR91, 273 (1953).Search in Google Scholar

G. M. Schwab, K. Polydoropoulos. Z. Anorg. Chem.274, 234 (1953).Search in Google Scholar

N. K. Vitchenko, A. S. Tikhonov. Trudy Voronezh. Univ.32, 129 (1953).Search in Google Scholar

T. P. Dirkse. J. Electrochem. Soc.101, 328 (1954). (http://dx.doi.org/10.1149/1.2781254)Search in Google Scholar

G. Dobrokhotov. Zh. Prikl. Khim.27, 1056 (1954).Search in Google Scholar

T. P. Dirkse, C. Postmus, R. Vandenbosch. J. Am. Chem. Soc.76, 6022 (1954). (http://dx.doi.org/10.1021/ja01652a041)Search in Google Scholar

J. W. Fulton, D. F. Swinehart. J. Am. Chem. Soc.76, 864 (1954). (http://dx.doi.org/10.1021/ja01632a068)Search in Google Scholar

P. G. M. Brown, J. E. Prue. Proc. R. Soc. London, Ser. A232, 320 (1955).Search in Google Scholar

R. A. Robinson, R. H. Stokes. Electrolyte Solutions, p. 400, Butterworths, London (1955).Search in Google Scholar

Y. A. Fialkov, Z. Z. Sheka. Zh. Neorg. Khim.1, 1238 (E:489) (1956).Search in Google Scholar

J. Kenttämaa. Suomen Kem. B29, 59 (1956).Search in Google Scholar

S. Shchukarev, I. Lilich, V. Latysheva. Z. Neorg. Khim.225 (1956).Search in Google Scholar

P. Krvalo, R. Luoto. Suomen Kem.30, 163 (1957).Search in Google Scholar

A. Kleiber. Ph.D. dissertation, Univ. Strasbourg (1957).Search in Google Scholar

F. Achenza. Ann. Chim. (Rome)48, 565 (1958).Search in Google Scholar

N. V. Aksel’rud, V. B. Spivakovskii. Zh. Neorg. Khim.3, 269 (1958).Search in Google Scholar

J. W. Collat. Anal. Chem.30, 1726 (1958). (http://dx.doi.org/10.1021/ac60143a003)Search in Google Scholar

M. Frydman, G. Nilsson, T. Rengemo, L. Sillen. Acta Chem. Scand.12, 878 (1958). (http://dx.doi.org/10.3891/acta.chem.scand.12-0878)Search in Google Scholar

J. Kenttämaa. Acta Chem. Scand.12, 1323 (1958). (http://dx.doi.org/10.3891/acta.chem.scand.12-1323)Search in Google Scholar

V. S. K. Nair, G. H. Nancollas. J. Chem. Soc.3706 (1958). (http://dx.doi.org/10.1039/jr9580003706)Search in Google Scholar

N. V. Aksel’rud, V. B. Spivakovskii. Ukr. Khim. Zh.25, 14 (1959).Search in Google Scholar

J. Besson, W. Eckert. Bull. Soc. Chim. Fr.1676 (1959).Search in Google Scholar

H. Matsuda, Y. Ayabe. Z. Elektrochem.63, 1164 (1959).Search in Google Scholar

V. S. K. Nair, G. H. Nancollas. J. Chem. Soc.3934 (1959). (http://dx.doi.org/10.1039/jr9590003934)Search in Google Scholar

R. A. Robinson, R. H. Stokes. Electrolyte Solutions, 2nd ed., p. 483, Butterworths, London (1959).Search in Google Scholar

F. J. C. Rossotti, H. Rossotti. J. Phys. Chem.63, 1041 (1959). (http://dx.doi.org/10.1021/j150577a003)Search in Google Scholar

P. B. Barton, P. M. Bethke. Am. J. Sci. A258, 21 (1960).Search in Google Scholar

J. L. Dye, M. P. Faber, D. J. Karl. J. Am. Chem. Soc.82, 314 (1960). (http://dx.doi.org/10.1021/ja01487a016)Search in Google Scholar

A. Patterson, H. Freitag. J. Electrochem. Soc.108, 529 (1961). (http://dx.doi.org/10.1149/1.2428129)Search in Google Scholar

G. Schorsch. Ph.D. Dissertation, Univ. Strasbourg (1961).Search in Google Scholar

E. L. Short, D. F. C. Morris. J. Inorg. Nucl. Chem.18, 192 (1961). (http://dx.doi.org/10.1016/0022-1902(61)80387-4)Search in Google Scholar

H. Bode. Z. Anorg. Chem.317, 3 (1962).Search in Google Scholar

V. A. Latysheva, L. R. Goryanina. Zh. Neorg. Khim.7, 732 (1962).Search in Google Scholar

D. D. Perrin. J. Chem. Soc.4500 (1962). (http://dx.doi.org/10.1039/jr9620004500)Search in Google Scholar

G. Biedermann, B. R. L. Row. Proc. 7thInternational Conference on Coordination Chemistry, Uppsala, pp. 159–163 (1962).Search in Google Scholar

P. Schindler, H. Althaus, A. Schurch, W. Feitknecht. Chimia16, 42 (1962).Search in Google Scholar

L. Pinto, K. Egger, P. Schindler. Helv. Chim. Acta46, 425 (1963). (http://dx.doi.org/10.1002/hlca.19630460144)Search in Google Scholar

P. Schindler, H. Althaus, W. Feitknecht. Gazz. Chim. Italy93, 168 (1963).Search in Google Scholar

V. E. Mironov, F. Y. E. Ivanov. Zh. Neorg. Khim.9, 1633 (1964).Search in Google Scholar

P. Schindler, H. Althaus, W. Feitknecht. Helv. Chim. Acta47, 982 (1964). (http://dx.doi.org/10.1002/hlca.19640470409)Search in Google Scholar

G. Schorsch. Bull. Soc. Chim. Fr.1456 (1964).Search in Google Scholar

H. G. Schnering. Z. Anorg. Chem.330, 170 (1964).Search in Google Scholar

W. F. Linke. Solubilities of Inorganic and Metal-Organic Compounds, 4th ed., American Chemical Society, Washington, DC (1965).Search in Google Scholar

G. Schorsch. Bull. Soc. Chim. Fr.988 (1965).Search in Google Scholar

T. Sekine. Acta Chem. Scand.19, 1526 (1965). (http://dx.doi.org/10.3891/acta.chem.scand.19-1526)Search in Google Scholar

F. Fittipaldi, S. Petrucci. J. Phys. Chem.71, 3414 (1967). (http://dx.doi.org/10.1021/j100870a009)Search in Google Scholar

A. O. Gubeli, J. Sainte-Marie. Can. J. Chem.45, 827 (1967). (http://dx.doi.org/10.1139/v67-137)Search in Google Scholar

H. C. Helgeson. J. Phys. Chem.71, 3121 (1967). (http://dx.doi.org/10.1021/j100869a002)Search in Google Scholar

H. Sigel, K. Becker, D. B. McCormick. Biochim. Biophys. Acta148, 655 (1967). (http://dx.doi.org/10.1016/0304-4165(67)90038-4)Search in Google Scholar

W. G. Baldwin, L. G. Sillén. Ark. Kemi31, 391 (1970).Search in Google Scholar

A. N. Christensen. Acta Chem. Scand.23, 2016 (1969). (http://dx.doi.org/10.3891/acta.chem.scand.23-2016)Search in Google Scholar

A. O. Gubeli, J. Sainte-Marie. Can. J. Chem.46, 1707 (1968). (http://dx.doi.org/10.1139/v68-284)Search in Google Scholar

B. Prasad. J. Indian Chem. Soc.45, 1037 (1968).Search in Google Scholar

V. Spivakovskii, G. Makovskaya. Zh. Neorg. Khim.13, 2764 (1968).Search in Google Scholar

S. C. Sircar, B. Prasad. J. Indian Chem. Soc.45, 63 (1968).Search in Google Scholar

J. Byberg, S. J. K. Jensen, U. K. Kläning. Trans. Faraday Soc.65, 3023 (1969). (http://dx.doi.org/10.1039/tf9696503023)Search in Google Scholar

A. W. Gardner, E. Glueckauf. Proc. R. Soc. London, Ser. A313, 131 (1969).Search in Google Scholar

P. Gerding. Acta Chem. Scand.23, 1695 (1969). (http://dx.doi.org/10.3891/acta.chem.scand.23-1695)Search in Google Scholar

H. Helgeson. Am. J. Sci.267, 729 (1969). (http://dx.doi.org/10.2475/ajs.267.7.729)Search in Google Scholar

R. M. Izatt, D. Eatough, J. J. Christensen, C. H. Bartholomew. J. Chem. Soc. A47 (1969). (http://dx.doi.org/10.1039/j19690000047)Search in Google Scholar

D. F. C. Morris, D. T. Andersen, S. L. Waters, G. L. Reed. Electrochim. Acta14, 643 (1969). (http://dx.doi.org/10.1016/0013-4686(69)80021-6)Search in Google Scholar

N. M. Nikolaeva. Zh. Neorg. Khim.14, 936 (1969).Search in Google Scholar

N. M. Nikolaeva, M. P. Primanchuk. Zh. Neorg. Khim.14, 2945 (E:1554) (1969).Search in Google Scholar

D. Singh, A. Mishra. Indian J. Chem.7, 1219 (1969).Search in Google Scholar

P. Schindler, M. Reinert, H. Gamsjäger. Helv. Chim. Acta52, 2327 (1969). (http://dx.doi.org/10.1002/hlca.19690520814)Search in Google Scholar

A. Bechtler, K. G. Breitschwerdt, K. Tamm. J. Chem. Phys.52, 2975 (1970). (http://dx.doi.org/10.1063/1.1673426)Search in Google Scholar

C. W. Childs. Inorg. Chem.9, 2465 (1970). (http://dx.doi.org/10.1021/ic50093a017)Search in Google Scholar

W. A. Fedorov, G. E. Chernikova, V. E. Mironov. Zh. Neorg. Chim.16, 325 (E:170) (1970).Search in Google Scholar

J. W. Larson. J. Phys. Chem.74, 3392 (1970). (http://dx.doi.org/10.1021/j100712a016)Search in Google Scholar

C. H. Mathewson. Zinc: The Science and Technology of the Metal, Its Alloys and Compounds, Hafner, New York (1970).Search in Google Scholar

V. A. Fedorov, G. E. Chernikova, T. N. Kalosh, V. E. Mironov. Zh. Neorg. Khim.16, 325 (E:170) (1971).Search in Google Scholar

E. M. Hanna, A. D. Pethybridge, J. E. Prue. Electrochim. Acta16, 677 (1971). (http://dx.doi.org/10.1016/0013-4686(71)85036-3)Search in Google Scholar

B. Pokric, Z. Pucar. J. Inorg. Nucl. Chem.33, 445 (1971). (http://dx.doi.org/10.1016/0022-1902(71)80387-1)Search in Google Scholar

A. Davies, L. A. K. Staveley. J. Chem. Thermodyn.4, 267 (1972). (http://dx.doi.org/10.1016/0021-9614(72)90066-3)Search in Google Scholar

H. Moriya, T. Sekine. Bull. Chem. Soc. Jpn.45, 1626 (1972). (http://dx.doi.org/10.1246/bcsj.45.1626)Search in Google Scholar

K. S. Pitzer. J. Chem. Soc., Faraday Trans. 168, 101 (1972).Search in Google Scholar

J. M. Austin, A. D Mair. Unpublished, cited with some details in 73HPa.Search in Google Scholar

W. L. Bradford. Limnol. Oceanogr.18, 757 (1973). (http://dx.doi.org/10.4319/lo.1973.18.5.0757)Search in Google Scholar

V. A. Fedorov, G. E. Chernikova, M. A. Kuznechikhina, V. E. Mironov. Zh. Neorg. Khim.18, 645 (E:337) (1973).Search in Google Scholar

M. Hutchinson, W. Higginson. J. Chem. Soc., Dalton Trans.1247 (1973). (http://dx.doi.org/10.1039/dt9730001247)Search in Google Scholar

G. R. Hedwig, H. K. J. Powell. J. Chem. Soc., Dalton Trans.798 (1973). (http://dx.doi.org/10.1039/dt9730000798)Search in Google Scholar

J. O. Nriagu. Geochim. Cosmochim. Acta37, 2357 (1973). (http://dx.doi.org/10.1016/0016-7037(73)90284-6)Search in Google Scholar

H. K. J. Powell. J. Chem. Soc., Dalton Trans.1947 (1973). (http://dx.doi.org/10.1039/dt9730001947)Search in Google Scholar

K. Ashurst. Nat. Inst. Met. Johannisburg, Report 1626 (1974).Search in Google Scholar

J. W. Bixler, T. M. Larson. J. Inorg. Nucl. Chem.36, 224 (1974). (http://dx.doi.org/10.1016/0022-1902(74)80694-9)Search in Google Scholar

V. V. Blokhin, L. I. Razmyslova, Y. A. Makashev, V. E. Mironov. Zh. Fiz. Khim.48, 151 (1974).Search in Google Scholar

D. Jagner. Anal. Chim. Acta68, 83 (1974). (http://dx.doi.org/10.1016/S0003-2670(01)85148-5)Search in Google Scholar

D. Jagner. J. Inorg. Nucl. Chem.36, 69 (1974).Search in Google Scholar

S. Ramamoorthy, P. G. Manning. J. Inorg. Nucl. Chem.36, 69 (1974).Search in Google Scholar

V. A. Fedorov, G. E. Chernikova, M. A. Kuznechikhina, T. I. Kuznetsova. Zh. Neorg. Khim.20, 2912 (1975).Search in Google Scholar

I. L. Khodakovskii, A. E. Elkin. Geokhimiya10, 1490 (1975).Search in Google Scholar

Z. Libus, H.Tralowska. J. Solution Chem.12, 1011 (1975). (http://dx.doi.org/10.1007/BF01074743)Search in Google Scholar

R. A. Reichle, K. G. McCurdy, L. G. Hepler. Can. J. Chem.53, 3841 (1975). (http://dx.doi.org/10.1139/v75-556)Search in Google Scholar

R.Tamamushi. Bull. Chem. Soc. Jpn.48, 705 (1975). (http://dx.doi.org/10.1246/bcsj.48.705)Search in Google Scholar

H. Yokoyama, H. Yamatera. Bull. Chem. Soc. Jpn.48, 2719 (1975). (http://dx.doi.org/10.1246/bcsj.48.2719)Search in Google Scholar

N. I. Zinevich, L. A. Garmash. Zh. Neorg. Khim.20, 2838 (1975).Search in Google Scholar

H. Bilinski, R. Huston, W. Stumm. Anal. Chim. Acta84, 157 (1976). (http://dx.doi.org/10.1016/S0003-2670(01)82850-6)Search in Google Scholar

S. Katayama. J. Solution Chem.5, 241 (1976). (http://dx.doi.org/10.1007/BF00645461)Search in Google Scholar

G. K. R. Makar, M. L. D. Touche, D. R. Williams. J. Chem. Soc., Dalton Trans.1016 (1976). (http://dx.doi.org/10.1039/dt9760001016)Search in Google Scholar

N. M. Nikolaeva. Int. Corrosion Conf. Ser. NACE1973, 146 (1976).Search in Google Scholar

R. M. Smith, A. E. Martell. Critical Stability Constants. 4. Inorganic Complexes, Plenum Press, New York (1976).Search in Google Scholar

K. A. Burkov, L. A. Garmash. Zh. Neorg. Khim.22, 536 (1977).Search in Google Scholar

E. Skou, T. Jacobson, W. van der Hoeven, S. Atlung. Electrochim. Acta22, 169 (1977). (http://dx.doi.org/10.1016/0013-4686(77)85031-7)Search in Google Scholar

K. Shimizu, N. Tsuchihashi, Y. Kondo. Rev. Phys. Chem. Jpn.47, 80 (1977).Search in Google Scholar

R. Aruga. Inorg. Chem.17, 2503 (1978). (http://dx.doi.org/10.1021/ic50187a033)Search in Google Scholar

K. A. Burkov, L. A. Garmash, L. Lilich. Zh. Neorg. Khim.23, 3193 (1978).Search in Google Scholar

V. A. Nazarenko, V. P. Antonovich, A. P. Rubel, E. A. Biryuk. Zh. Neorg. Khim.23, 1787 (1978).Search in Google Scholar

M. P. Ryan, J. E. Bauman. Inorg. Chem.17, 3329 (1978). (http://dx.doi.org/10.1021/ic50190a004)Search in Google Scholar

V. A. Fedorov, M. A. Kuznechikhina, I. V. Kanarsh, G. M. Kirnyuk, G. E. Chernikova. Koord. Khim.5, 42 (1979).Search in Google Scholar

A. W. Mann, R. L. Deutscher. Chem. Geol.29, 293 (1980). (http://dx.doi.org/10.1016/0009-2541(80)90026-1)Search in Google Scholar

R. Wachter, K. Riederer. Pure Appl. Chem.53, 1301 (1981). (http://dx.doi.org/10.1351/pac198153071301)Search in Google Scholar

H. Yokoyama, H. Yamatera. Bull. Chem. Soc. Jpn.54, 2286 (1981). (http://dx.doi.org/10.1246/bcsj.54.2286)Search in Google Scholar

D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11 (Suppl. 2) (1982).Search in Google Scholar

G. R. Ramos, M. C. Alverez-Coque, C. M. Fernandez. Talanta30, 777 (1983). (http://dx.doi.org/10.1016/0039-9140(83)80177-5)Search in Google Scholar PubMed

Z. Yang, C. Yang, Z. Wu. Gaodeng Xuexiao Huaxue Xuebao4, 347 (1983).Search in Google Scholar

C. Fouillac, A. Criaud. Geochem. J.18, 297 (1984). (http://dx.doi.org/10.2343/geochemj.18.297)Search in Google Scholar

A. C. Hayes, P. Kruus, W. A. Adams. J. Solution Chem.13, 61 (1984). (http://dx.doi.org/10.1007/BF00648592)Search in Google Scholar

M. M. Emara, N. A. Farid, M. M. Bahr, H. A. Shehata. J. Indian Chem. Soc.62, 744 (1985).Search in Google Scholar

D. Ferri, I. Grenthe. Acta Chem. Scand. A39, 347 (1985). (http://dx.doi.org/10.3891/acta.chem.scand.39a-0347)Search in Google Scholar

N. Schmelzer, M. Grigo, B. Zorn, J. Einfeldt. Naturwissenschaften34, 25 (1985).Search in Google Scholar

C. F. Baes, R. E. Mesmer. The Hydrolysis of Cations, R. E. Krieger, Malabar, FL (1986).Search in Google Scholar

P. P. Singh, H. P. Dahiya, V. K. Sharma. Indian J. Chem. A25, 116 (1986).Search in Google Scholar

D. Ferri, I. Grenthe, S. Hietanen, F. Salvatore. Acta Chem. Scand. A41, 190 (1987). (http://dx.doi.org/10.3891/acta.chem.scand.41a-0190)Search in Google Scholar

B. Hacht, G. Berthon. Inorg. Chim. Acta136, 165 (1987). (http://dx.doi.org/10.1016/S0020-1693(00)81149-4)Search in Google Scholar

S. Komorsky-Lovrić, M. Branica. J. Electroanal. Chem.226, 253 (1987).Search in Google Scholar

D. Ferri, F. Salvatore. Ann. Chim. (Rome)78, 83 (1988).Search in Google Scholar

D. Ferri, F. Salvatore. Ann. Chim. (Rome)78, 497 (1988).Search in Google Scholar

A. V. Plyasunov, A. B. Belonozhko, I. P. Ivanov, I. L. Khodakovskiy. Geokhimiya3, 409 (1988).Search in Google Scholar

V. H. Acevedo, J. A. de Morán, L. A. Sales, M. M. K. De Zamora. J. Chem. Eng. Data34, 101 (1989). (http://dx.doi.org/10.1021/je00055a029)Search in Google Scholar

J. K. Stanley, R. H. Byrne. Geochim. Cosmochim. Acta54, 753 (1990). (http://dx.doi.org/10.1016/0016-7037(90)90370-Z)Search in Google Scholar

S. Wasylkiewicz. Fluid Phase Equilibr.57, 277 (1990). (http://dx.doi.org/10.1016/0378-3812(90)85127-V)Search in Google Scholar

G. N. Mukherjee, T. K. Ghosh. J. Indian Chem. Soc.68, 194 (1991).Search in Google Scholar

W. E. Price, H. Weingärtner. J. Phys. Chem.95, 8933 (1991). (http://dx.doi.org/10.1021/j100175a092)Search in Google Scholar

W. W. Rudolph, M. H. Brooker, P. R. Tremaine. Z. Phys. Chem.209, 181 (1991). (http://dx.doi.org/10.1524/zpch.1999.209.Part_2.181)Search in Google Scholar

S. E. Ziemniak, M. E. Jones, K. E. S. Combs. J. Solution Chem.21, 1153 (1992). (http://dx.doi.org/10.1007/BF00651861)Search in Google Scholar

P. Janoš. J. Chromatogr., A657, 435 (1993).Search in Google Scholar

H. A. Shehata. Univ. Scientist Phys. Sci. 5, 108 (1993) [Chem. Abs. 121, 419406 (1994)].Search in Google Scholar

M. Iuliano. Ann. Chim. (Rome)84, 187 (1994).Search in Google Scholar

N. B. Milić, R. M. Jelić. J. Chem. Soc., Dalton Trans.3597 (1995). (http://dx.doi.org/10.1039/dt9950003597)Search in Google Scholar

M. Vega, R. Pardo, M. M. Herguedas, E. Barrado, C. Castrillejo. Anal. Chim. Acta310, 131 (1995). (http://dx.doi.org/10.1016/0003-2670(95)00116-H)Search in Google Scholar

H. P. Srivastava, D. Tiwari. Indian J. Chem. A34, 550 (1995).Search in Google Scholar

J. L. Aparicio, M. P. Elizalde. J. Solution Chem.25, 1055 (1996). (http://dx.doi.org/10.1007/BF00972921)Search in Google Scholar

M. L. Parmer, V. K. Gupta. J. Indian Chem. Soc.73, 512 (1996).Search in Google Scholar

A. Saha, N. Saha, L.-N. Ji, J. Zhao, F. Gregan, S. A. A. Sajadi, B. Song, H. Sigel. J. Biol. Inorg. Chem.1, 231 (1996). (http://dx.doi.org/10.1007/s007750050048)Search in Google Scholar

B. J. Colston, V. J. Robinson. Analyst122, 1451 (1997). (http://dx.doi.org/10.1039/a706115c)Search in Google Scholar

I. Grenthe, A. V. Plyasunov, K. Spahiu. In Modelling in Aquatic Chemistry, I. Grenthe, I. Puigdomenech (Eds.), pp. 325–426, Organisation for Economic Co-operation and Development, Paris (1997).Search in Google Scholar

Y. Hanzawa, D. Hiroishi, C. Matsura, K. Ishigure, M. Nagao, M. Haginuma. Nucl. Sci. Eng.127, 292 (1997).Search in Google Scholar

G. N. Mukherjee, H. K. Sahu. J. Indian Chem. Soc.75, 143 (1998).Search in Google Scholar

D. J. Wesolowski, P. Bénézeth, D. A. Palmer. Geochim. Cosmochim. Acta62, 971 (1998). (http://dx.doi.org/10.1016/S0016-7037(98)00039-8)Search in Google Scholar

P. Bénézeth, D. A. Palmer, D. J. Wesolowski. Geochim. Cosmochim. Acta63, 1571 (1999). (http://dx.doi.org/10.1016/S0016-7037(99)00109-X)Search in Google Scholar

R. Patel, P. Gokhale, K. Pandeya. J. Indian Chem. Soc.76, 475 (1999).Search in Google Scholar

R. Patel, H. Pandey, K. Pandeya. Indian J. Chem. A38, 850 (1999).Search in Google Scholar

W. W. Rudolph, M. H. Brooker, P. R. Tremaine. J. Solution Chem.28, 621 (1999). (http://dx.doi.org/10.1023/A:1022691117630)Search in Google Scholar

G. N. Mukherjee, H. K. Sahu. J. Indian Chem. Soc.77, 209 (2000).Search in Google Scholar

W. Preis, E. Königsberger, H. Gamsjäger. J. Solution Chem.29, 605 (2000). (http://dx.doi.org/10.1023/A:1005142723385)Search in Google Scholar

W. Preis, H. Gamsjäger. J. Chem. Thermodyn.33, 803 (2001). (http://dx.doi.org/10.1006/jcht.2000.0794)Search in Google Scholar

R. N. Patel, R. P. Shrivastava, N. Singh, S. Kumar, K. B. Pandeya. Indian J. Chem. A40, 361 (2001).Search in Google Scholar

Y. Zhang, M. Muhammed. Hydrometallurgy60, 215 (2001). (http://dx.doi.org/10.1016/S0304-386X(01)00148-7)Search in Google Scholar

P. Bénézeth, D. A. Palmer, D. J. Wesolowski, C. Xiao. J. Solution Chem.31, 947 (2002). (http://dx.doi.org/10.1023/A:1021866025627)Search in Google Scholar

B. Hacht, H. Tayaa, A. Benayad, M. Mimouni. J. Solution Chem.31, 757 (2002). (http://dx.doi.org/10.1023/A:1021185024891)Search in Google Scholar

A. Pérez-Cadenas, R. López-Garzón, L. Godino-Salido, P. Arranz-Mascarós, D. Gutiérrez-Valero. Transition Met. Chem.27, 184 (2002). (http://dx.doi.org/10.1023/A:1013917112711)Search in Google Scholar

W. W. Rudolph, G. Irmer, G. T. Hefter. Phys. Chem. Chem. Phys.5, 5253 (2003). (http://dx.doi.org/10.1039/b308951g)Search in Google Scholar

H. Abdollahi, S. Zeinali. Talanta62, 151 (2004). (http://dx.doi.org/10.1016/S0039-9140(03)00410-7)Search in Google Scholar PubMed

S. Bandyopadhyay, A. Das, G. Mukherjee, A. Cantoni, G. Bocelli, S. Chaudhuri, J. Ribas. Inorg. Chim. Acta357, 3563 (2004). (http://dx.doi.org/10.1016/j.ica.2004.05.010)Search in Google Scholar

R. Buchner, T. Chen, G. T. Hefter. J. Phys. Chem. B108, 2365 (2004). (http://dx.doi.org/10.1021/jp034870p)Search in Google Scholar

V. B. di Marco, A. Tapparo, A. Dolmella, G. G. Bombi. Inorg. Chim. Acta357, 135 (2004). (http://dx.doi.org/10.1016/S0020-1693(03)00500-0)Search in Google Scholar

M. Bešter-Rogač, V. Babič, T. M. Perger, R. Neueder, J. Barthel. J. Mol. Liq.118, 111 (2005). (http://dx.doi.org/10.1016/j.molliq.2004.07.023)Search in Google Scholar

T. Chen, G. T. Hefter, R. Buchner. J. Solution Chem.34, 1059 (2005).Search in Google Scholar

H. Gamsjäger, J. Bugajski, T. Gajda, R. J. Lemire, W. Preis. Chemical Thermodynamics of Nickel, Elsevier (2005).Search in Google Scholar

K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, S. Sjöberg, H. Wanner. Pure Appl. Chem.77, 739 (2005). (http://dx.doi.org/10.1351/pac200577040739)Search in Google Scholar

C. Akilan, N. Rohman, G. T. Hefter, R. Buchner. Chem. Phys. Chem.7, 2319 (2006). (http://dx.doi.org/10.1002/cphc.200600342)Search in Google Scholar PubMed

G. T. Hefter. Pure Appl. Chem.78, 1571 (2006). (http://dx.doi.org/10.1351/pac200678081571)Search in Google Scholar

Y. Marcus, G. T. Hefter. Chem. Rev.106, 4585 (2006). (http://dx.doi.org/10.1021/cr040087x)Search in Google Scholar PubMed

K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, S. Sjöberg, H. Wanner. Pure Appl. Chem.79, 895 (2007). (http://dx.doi.org/10.1351/pac200779050895)Search in Google Scholar

A. Farajtabar, F. Gharib, P. Jamaat, N. Safari. J. Chem. Eng. Data53, 350 (2008). (http://dx.doi.org/10.1021/je7003676)Search in Google Scholar

K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, A.-K. Leuz, S. Sjöberg, H. Wanner. Pure Appl. Chem.81, 2425 (2009). (http://dx.doi.org/10.1351/PAC-REP-09-03-05)Search in Google Scholar

L. D. Pettit, K. J. Powell. SC-Database, IUPAC Stability Constants Database. Release 5.8. IUPAC; Academic Software, Otley, UK (2010); for availability, see www.iupac.org/publications/scdb or www.acadsoft.co.uk.Search in Google Scholar

K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, A.-K. Leuz, S. Sjöberg, H. Wanner. Pure Appl. Chem.83, 1163 (2011). (http://dx.doi.org/10.1351/PAC-REP-10-08-09)Search in Google Scholar

Published Online: 2013-11-23
Published in Print: 2013-12-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac-rep-13-06-03/html
Scroll to top button